Real-Valued Iterative Algorithms for Complex Symmetric Linear Systems
نویسندگان
چکیده
We consider real-valued preconditioned Krylov subspace methods for the solution of complex linear systems, with an emphasis on symmetric (non-Hermitian) problems. Different choices of the real equivalent formulation are discussed, as well as different types of block preconditioners for Krylov subspace methods. Numerical experiments illustrating the performance of the various approaches are presented.
منابع مشابه
Block preconditioning of real-valued iterative algorithms for complex linear systems
We revisit real-valued preconditioned iterative methods for the solution of complex linear systems, with an emphasis on symmetric (non-Hermitian) problems. Different choices of the real equivalent formulation are discussed, as well as different types of block preconditioners for Krylov subspace methods. We argue that if either the real or the symmetric part of the coefficient matrix is positive...
متن کاملIterative Methods for the Solution of Very Large Complex Symmetric Linear Systems
In the eld of computational electrodynamics the discretization of Maxwell's equations using the Finite Integration Theory (FIT) yields very large, sparse, complex symmetric linear systems of equations. For this class of complex non-Hermitian systems a number of conjugate gradient-type algorithms is considered. The complex version of the biconjugate gradient (BiCG) method by Jacobs can be extend...
متن کاملProjected Iterative Algorithms for Complex Symmetric Systems Arising in Magnetized Multicomponent Transport
We investigate iterative algorithms for solving complex symmetric constrained singular systems arising in magnetized multicomponent transport. The matrices of the corresponding linear systems are symmetric with a positive semi-definite real part and an imaginary part with a compatible nullspace. We discuss well posedness, the symmetry of generalized inverses and Cholesky methods. We investigate...
متن کاملImplementing Complex Krylov Solvers with Minimal Pain
Most algorithms used in preconditioned iterative methods are generally applicable to complex valued linear systems, with real valued linear systems simply being a special case. However, most iterative solver packages available today focus exclusively on real valued systems, or deal with complex valued systems as an afterthought. One obvious approach to addressing this problem is to recast the c...
متن کاملFixed-Point Algorithms for the Blind Separation of Arbitrary Complex-Valued Non-Gaussian Signal Mixtures
We derive new fixed-point algorithms for the blind separation of complex-valued mixtures of independent, noncircularly symmetric, and non-Gaussian source signals. Leveraging recently developed results on the separability of complex-valued signal mixtures, we systematically construct iterative procedures on a kurtosis-based contrast whose evolutionary characteristics are identical to those of th...
متن کامل